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[1] Global retrievals of surface soil moisture from the
Scanning Multichannel Microwave Radiometer for the
period 1979-87 are assimilated into the NASA
Catchment land surface model as it is driven with surface
meteorological data derived from observations. Validation
against ground-based measurements in Eurasia and North
America from the Global Soil Moisture Data Bank
demonstrates a long assumed (but rarely proven) property
of soil moisture fields derived from data assimilation — that
the assimilation product is superior to either satellite data or
model data alone. An analysis of the innovations reveals
that the filter is only partially operating within its
underlying assumptions and offers clues how spatially
distributed model error parameters could further enhance
filter performance. Citation: Reichle, R. H., and R. D. Koster
(2005), Global assimilation of satellite surface soil moisture
retrievals into the NASA Catchment land surface model, Geophys.
Res. Lett., 32, 1.02404, doi:10.1029/2004GL021700.

1. Motivation

[2] Global fields of the vertical profile of soil moisture
are needed, for example, to initialize sub-seasonal forecasts
of summer precipitation and air temperature over mid-
latitude land [Koster et al., 2004]. Yet in situ measurements
of root zone soil moisture are limited to parts of Eurasia
and North America. Alternatively, soil moisture can be
derived from a land surface model forced with observed
precipitation, radiation, and other surface meteorological
data [Rodell et al., 2003]. Additional information may be
provided by satellite observations of C-band (6.6 GHz) or
L-band (1.4 GHz) radiobrightness temperature, which can
be interpreted in terms of surface soil moisture in the top
1 cm or 5 cm soil layer, respectively. It has long been
argued — but not yet proven decisively — that assimilation
of satellite retrievals of surface soil moisture into a land
model provides superior estimates of global soil moisture
conditions, even in the root zone (typically 1 m deep).

[3] While there has been considerable progress in the
methodological development of soil moisture data assimi-
lation [Walker and Houser, 2001; Margulis et al., 2002;
Reichle et al., 2002; Crow and Wood, 2003; Seuffert et al.,
2003], there is little experience with the assimilation of a
multi-year, global data set of surface soil moisture retrievals.
In this paper, we assimilate global soil moisture retrievals
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from the Scanning Multichannel Microwave Radiometer
(SMMR) into the NASA Catchment land surface model
[Koster et al., 2000] for the period 1979-87. Through
validation against ground measurements, we demonstrate
that assimilation of SMMR data yields improved soil
moisture estimates — better than those obtained with the
model or from the satellite alone.

2. Data and Method

[4] Owe et al. [2001] recently developed a novel retrieval
algorithm for soil moisture from passive microwave mea-
surements and produced a nine-year, global soil moisture
data set from SMMR observations for the period 1978—-87
[De Jeu, 2003]. For the period 1979-93, Berg et al. [2003]
developed a high-quality, global data set of surface meteo-
rological fields based on reanalysis data and corrected with
observations as much as possible. This data set is used to
force the NASA Catchment land surface model. Finally,
ground-based soil moisture data for the SMMR time period
are available for select locations in Eurasia and North
America from the Global Soil Moisture Data Bank
(GSMDB) [Robock et al., 2000].

[s] These satellite, ground-based, and model soil mois-
ture data are independent, and each has its own set of
limitations [Reichle et al., 2004]. State-of-the-art land
surface models produce widely different soil moisture
output even when integrated with identical meteorological
forcing inputs [Entin et al., 1999]. Errors in C-band surface
soil moisture retrievals are generally high. Modest amounts
of vegetation obscure the soil moisture signal, which is
limited to the top 1 cm of the soil. Up to 10 retrievals per
month are available from SMMR (see Figure 1 (top) for
regions where retrievals are typically available.) Ground-
based measurements — used for validation — are sparse and
not necessarily representative of large-scale soil moisture.
At this time, errors in global soil moisture observation and
modeling are so large that there is no universally accepted
climatology. Consequently, we scale the satellite observa-
tions to the model’s climatology before assimilating the data
into the model [Reichle and Koster, 2004]. For seasonal
climate prediction, knowledge of soil moisture anomalies is,
in any case, more important than knowledge of absolute soil
moisture.

[6] In a data assimilation system, the model-generated
soil moisture is corrected toward the observational estimate,
with the degree of correction determined by the levels of
error associated with each. The assimilation system used
here is based on the Ensemble Kalman filter (EnKF), which
is well suited to the nonlinear and intermittent character of
land surface processes [Reichle et al., 2002]. The key
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Figure 1. Difference fields for July 1983 anomalies of
surface soil moisture [m*m]: (top) SMMR anomalies
minus model anomalies, (bottom) EnKF anomalies minus
model anomalies.

feature of the EnKF is that error estimates of the model-
generated results are dynamically derived from an ensemble
of model integrations. Each member of the ensemble
experiences slightly perturbed instances of the observed
precipitation fields (representing errors in the precipitation
data) and is also subject to randomly generated noise that is
directly added to the soil moisture states (representing errors
in model physics and parameters). In this paper, we use the
one-dimensional version of the EnKF. Preliminary results
with the three-dimensional EnKF [Reichle and Koster, 2003]
show a further improvement in surface soil moisture but also
slightly less skill for root zone soil moisture. Calibration of
the latter is very complex and work is still in progress.

[7] In the next section, we analyze “raw” time series of
monthly mean soil moisture as well as anomaly time series.
The latter are obtained by subtracting the monthly clima-
tology of each data set (i.e., the average for each calendar
month) from the raw time series. In other words, the raw
time series include the seasonal cycle, while the anomaly
time series describe only deviations from the average
seasonal cycle. Our analysis focuses on time series correla-
tions between the various data sets rather than on root-
mean-square errors, because there is not enough evidence to
tell whether the climatology of the ground-, satellite-, or
model-based data is most correct [Reichle et al., 2004].

3. Results

[8] Figure 1 shows an example of the assimilation
product. Figure 1 (top) shows the difference between the
monthly mean anomaly fields of the SMMR retrievals and
the model soil moisture for July 1983. For example, both
the model and the (scaled) SMMR data suggest a wet
anomaly in the northern Great Plains of North America
during this month, but the anomaly is weaker in the SMMR
data, and thus the difference in the anomalies shows up as
negative in Figure 1. The assimilation algorithm is designed
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to estimate the true anomalies by combining the model and
SMMR data. In practice, the EnKF assimilation anomaly
tends to lie between the model and SMMR estimates. This
is evident in Figure 1 (bottom), which shows the EnKF
anomaly minus the model anomaly. This difference is, to
first order, a damped version of the differences shown in
Figure 1 (top), as can be seen, for example, in North
America, central Eurasia, and Australia. In the Sahel there
is almost no response, suggesting that here the assimilation
algorithm places much more weight on the model than on
the SMMR observations.

[o] Figure 1 primarily demonstrates that the assimilation
system works as designed. There are, however, some
interesting dynamical effects worth noting. For example,
the SMMR data also influence the EnKF estimates of root
zone soil moisture (not shown), allowing the temporal
propagation of SMMR information. In the midwestern
USA (along —90 degrees longitude), SMMR data reduce
the strength of the EnKF anomaly for root zone moisture
early in the summer of 1983. The memory contained in this
moisture reservoir then carries forward the weaker anomaly
into July, when few SMMR data are available (most likely
because vegetation grew too dense). As a result, Figure 1
shows that, despite the essential absence of SMMR data in
the midwest during July 1983, the EnKF surface anomaly
for that month differs from that of the model.

[10] The global performance of the assimilation algorithm
is reflected, in part, in its innovations sequence (the differ-
ence between SMMR retrievals and their corresponding
model forecasts during the assimilation integration). If the
filter operates according to its underlying assumptions — that
various linearizations hold, and that model and observation
errors are uncorrelated and normally distributed — then the
sum of the model error covariance (diagnosed from the
ensemble spread) and the measurement error covariance
should equal the sample covariance of the innovations
sequence. In other words, we can check the assumptions
underlying the assimilation process by checking whether the
innovations sequence has the expected mean and variance
[Reichle et al., 2002].

[11] Because of the bias reduction applied before the
assimilation, the mean of the innovations is statistically
indistinguishable from zero. A supplemental analysis shows
that not scaling the SMMR data a priori leads to a mean that
is about one standard deviation away from the expected
mean of zero, providing further evidence that bias removal
is an indispensable part of the assimilation system. The
global average variance of the normalized innovations,
shown in Figure 2, is around 0.7, somewhat short of the
expected value of 1. Moreover, there are strong variations
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Figure 2. Variance of normalized innovations [-].

2 of 4



102404

0.45 surface moisture content [rnsm'S]

0.4
0.35¢
0.3

0251

0.2

root zone moisture content [msm"’}

Jul Oct 1983

Jan Apr
Figure 3. (Top group of lines, left axis) Surface and
(Bottom group of lines, right axis) root zone soil moisture
for 1983 at a representative location in Illinois (89.5W,
38.6N): (Light gray) GSMDB, (Dark grey with circles)
bias-corrected SMMR, (Black solid) model, (Black dashed)
EnKF.

across the globe. The variance slightly exceeds 1 in central
North America, and it is closer to 2 in mid-latitude Eurasia.
For the rest of the globe, the innovations show too small a
variance. These imperfections are explained in part by non-
linearities in the model and in the observation operator. They
also relate, however, to an imperfect representation of the
model error characteristics in the ensemble generation. Since
the variance of the normalized innovations is inversely
related to the model forecast error variance, Figure 2 suggests
too little (too much) model or rainfall error in wet (arid)
climates. It might be possible to use the innovations variance
to tune filter parameters (such as model error variances)
before repeating the assimilation integration. Alternatively,
adaptive tuning methods could be tried [Dee, 1995].

[12] Without any such tuning of the filter, we now show
that the assimilation of SMMR retrievals already yields
modest but significant improvements in the estimation of
soil moisture. For this validation, we use in situ observa-
tions from up to 77 locations in North America and Eurasia
that have sufficient GSMDB and SMMR data [Reichle et
al., 2004]. Figure 3 shows the monthly mean surface and
root zone soil moisture for 1983 at a representative location
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in Illinois. Note that the SMMR data (but not the ground
data) have been corrected to the model climatology. At this
location, the phase of the model data lags that of the ground
data by about one month. The SMMR data, on the other
hand, show a better phase agreement with the ground data,
though the SMMR data are not available during summer
because the vegetation then is too dense. The assimilation of
just a few months of SMMR data per year shifts the spring
dry-down and fall wet-up by about half a month towards the
phase of the annual cycle of the ground data. Most impor-
tantly, this phase improvement applies equally to the root
zone, where no SMMR data are available. Moreover, we see
again (like in Figure 1) how memory in the root zone affects
moisture in the surface layer. The monthly mean surface soil
moisture of the assimilation integration stays below that of
the model during July—September even in the absence of
SMMR data.

[13] Table I provides a stronger, global-scale demonstra-
tion of improvement associated with assimilation. Listed are
estimated time series correlation coefficients (R) with in situ
data, computed from monthly mean time series and aver-
aged over all locations with sufficient data in North America
and Eurasia. Also given are 95% confidence intervals for R.
(These must be interpreted with care for the raw time series
because of the fixed-phase seasonal cycle signal.) For
surface soil moisture, the satellite and model data show
about the same skill in reproducing the in situ data, with R
equal to 0.44 and 0.43, respectively (0.32 and 0.36, respec-
tively, for anomalies.) Merging the SMMR retrievals with
the model through data assimilation leads to an increase in
R to 0.50 (0.43 for anomalies). This increase is highly
statistically significant, with confidence levels of 99.7—
99.9% based on a Monte-Carlo analysis (last two columns
of Table 1). From the listed R’s and their uncertainties, we
generated thousands of random pairs of R values, one of
each pair representing R for the EnKF, and the other the R
for SMMR or the model. We then computed the probability
that the increase in R is real by determining the fraction of
sample pairs with a positive difference in R.

[14] The model’s skill for root zone soil moisture is
comparable to its skill at the surface (Table 1), with R equal
to 0.46 (0.32 for anomalies). Merging the surface informa-
tion contained in the SMMR retrievals via data assimilation
leads to a small increase in R for the root zone soil moisture
to 0.50 (0.35 for anomalies). For root zone moisture, the
increase is still statistically significant, albeit at a somewhat
lower confidence level (97%). For the root zone anomalies,
the confidence level for improvement due to the assimila-
tion drops to 80%. This is partly because the increase in R

Table 1. Average Time Series Correlation Coefficients R With GSMDB Surface and Root Zone Soil
Moisture (sfmc and rzmc, Respectively) for SMMR, Model, and Assimilation Estimates With 95%

Confidence Intervals®

Correlation Coefficient With
GSMDB Data [-]

Confidence Levels [%]:
Improvement of EnKF

N SMMR Model EnKF Over SMMR Over Model
Sfimc 77 44 £ .03 43 +£.03 50 +£.03 99.7 99.9
Sfimc anomalies 66 32+.03 36 .03 43 +.03 99.9 99.9
Rzmc 59 - 46 + .03 .50 +.03 - 97
Rzmc anomalies 33 - 32+ .05 35+.05 - 80

N denotes the number of locations with sufficient data. Also shown are confidence levels that R for EnKF
estimates is higher than R for SMMR (or model) data.
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from 0.32 to 0.35 is smaller, and partly because there are
fewer data available and thus the 95% confidence intervals
around R are larger. Note also that even if the assimilation
data were perfect, R could still be much less than 1 due to
the mismatch of scale between the assimilation data and the
GSMDB data. In other words, the seemingly modest in-
crease in R from 0.43 to 0.50 could be quite large relative to
the maximum increase possible given the point-scale char-
acter of the validation data.

[15] The increase in time series correlations with in situ
data after assimilation suggests that the satellite and model
data contain independent information that the assimilation
algorithm can combine into superior estimates. Note that the
success of the assimilation system in improving estimates of
root zone moisture, perhaps the key assimilation product,
hinges on many factors. The model, for example, must
accurately describe the propagation of the surface informa-
tion into the deeper soil. Also, the model error parameters of
the assimilation system that co-determine the strength of the
coupling between the surface and the root zone must be
realistic. Unfortunately, we cannot now test these assump-
tions at the global scale with any confidence. Furthermore,
our ground validation data are point measurements and may
be quite limited in their ability to represent soil moisture at
the catchment scale. Still, despite these limitations, the
assimilation of SMMR retrievals does yield improved
estimates of soil moisture conditions.

4. Conclusions

[16] The global assimilation of SMMR satellite soil
moisture retrievals into the NASA Catchment land surface
model using the EnKF was examined. The assimilation
improves the average annual cycle of surface and root zone
soil moisture at locations with GSMDB ground data. The
assimilation also produces small but significant improve-
ments in time series correlations with ground data for
surface soil moisture and its anomalies. Correlations for
root zone soil moisture are also improved, though not with
the same statistical significance.

[17] Global analysis of the innovations sequence reveals
that the assimilation algorithm only partially performs within
its underlying assumptions. This is not surprising for such a
first global assimilation of satellite data into a state (soil
moisture) controlled by poorly understood non-linear pro-
cesses. In future work, information from the innovations
sequence will be used to design spatially distributed model
error parameters, potentially in an adaptive framework, that
might improve the performance of the assimilation algo-
rithm. Finally, modern-era data such as C-band retrievals
from the Advanced Microwave Scanning Radiometer for the
Earth Observing System, L-band retrievals from the planned
Hydrospheric States mission [Entekhabi et al., 2004], and
satellite-supported surface meteorological observations of
higher quality should further our assimilation-based estima-
tion of global soil moisture fields.
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